4.5 Article

Atomistic modeling of dislocations in a random quinary high-entropy alloy

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 173, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2019.109366

关键词

High entropy alloys; Dislocations; Atomistic simulations

资金

  1. NSF [1507846]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1507846] Funding Source: National Science Foundation

向作者/读者索取更多资源

The structure and mobility of dissociated 1/2 < 110 > dislocations in a model FCC high entropy alloy is studied using atomistic simulations. The simulations are performed using model embedded atom method (EAM) potentials for a model five component random equiatomic alloy, and a corresponding average atom potential. The dislocation line that corresponds to minimum energy in the complex alloy is not straight but wavy and significant variations in dissociation distances are found. This effect is more significant for edge dislocations than for screw dislocations. Calculations also show that both the stable and unstable stacking fault energies vary according to the local composition of the alloy. The range of Peierls stresses computed for the dislocations in the alloy are significantly higher than in the pure components or those computed using an average atom potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据