4.7 Review

All-carbon multi-scale and hierarchical fibers and related structural composites: A review

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 186, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2019.107932

关键词

Multi-scale (multiscale) fiber; Carbon nanotubes; Graphene oxide; Interfacial shear strength; Carbon-carbon composite

资金

  1. University of Trento

向作者/读者索取更多资源

Recent advancements in the preparation of all-carbon multi-scale fibers and their use in carbon fiber (CF)-reinforced polymer composites are reviewed. A multi-scale or hierarchical structure is the result of a combination of micro-scaled fibers and nano-scaled fillers which are in intimate contact by physical or chemical interactions. Carbonaceous nanofillers, such as carbon black, carbon nanotubes and nanofibers, graphene and its oxidized derivatives, can be deposited on CFs by different strategies. In particular, preformed nanoparticles (indirect methods) or in situ prepared nanoparticles (direct methods) can be used. Multi-scale structuring of the interlaminar region via various deposition techniques is also discussed. An overview of multi-scale fibers and multiscale structured interlaminar layers to improve the load transfer between the matrix (namely thermoset-, thermoplastic- and carbon-based) and the reinforcing (CFs) phase is considered for this review. Moreover, their use to add new functionalities (electric conductivities, sensing, thermal conductivities) to structural composites is also reviewed. Finally, the recent efforts in modeling the mechanical behavior of the interphase and interlaminar regions of all-carbon composites with multi-scale fibers are discussed, along with some notes on future challenges.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据