4.5 Article

Effects of Thermal Radiation and Slip Mechanism on Mixed Convection Flow of Williamson Nanofluid Over an Inclined Stretching Cylinder

期刊

COMMUNICATIONS IN THEORETICAL PHYSICS
卷 71, 期 12, 页码 1405-1415

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0253-6102/71/12/1405

关键词

MHD; Williamson nanofluid; velocity and thermal slip; inclined stretching cylinder; heat generation/absorption

向作者/读者索取更多资源

The current investigation highlights the mixed convection slip flow and radiative heat transport of uniformly electrically conducting Williamson nanofluid yield by an inclined circular cylinder in the presence of Brownian motion and thermophoresis parameter. A Lorentzian magnetic body force model is employed and magnetic induction effects are neglected. The governing equations are reduced to a system of nonlinear ordinary differential equations with associated boundary conditions by applying scaling group transformations. The reduced nonlinear ordinary differential equations are then solved numerically by Runge-Kutta-Fehlberg fifth-order method with shooting technique. The effects of magnetic field, Prandtl number, mixed convection parameter, buoyancy ratio parameter, Brownian motion parameter, thermophoresis parameter, heat generation/absorption parameter, mass transfer parameter, radiation parameter and Schmidt number on the skin friction coefficient and local Nusselt are analyzed and discussed. It is found that the velocity of the fluid decreases with decrease in curvature parameter, whereas it increases with mixed convection parameter. Further, the local Nusselt number decreases with an increase in the radiation parameter. The numerical comparison is also presented with the existing published results and found that the present results are in excellent agreement which also confirms the validity of the present methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据