4.7 Article

Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor

期刊

COMBUSTION AND FLAME
卷 213, 期 -, 页码 211-225

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2019.11.039

关键词

Combustion instability; Chemiluminescence; RANS-LES model; Detailed chemical kinetics

资金

  1. AFOSR project [FA9550-14-1-0029]

向作者/读者索取更多资源

Prediction of combustion instability is essential in reducing development costs of large scale rocket engines. Recently, high fidelity CFD models have shown some ability to represent the stability characteristics of sub-scale experimental combustors. A challenge remains in acquiring experimental measurements of critical combusting flow properties, especially measurements of the unsteady heat addition field, for comparison to models. The chemiluminescent emission of radicals OH* and CH*, although commonly employed, may fall short due to its known dependence on pressure, strain rate, equivalence ratio, and turbulence level. Since these flame properties have large variations in an unstable rocket combustor, it is difficult to decouple the emission from all other variables except the heat release. Computations capture the local variations, and therefore can be used for a direct comparison with the measurements. The present study investigates the relationship between chemiluminescent species and heat release rate of the flame using simulations that employ detailed kinetics including the emitting species. This relationship is then compared to experimental spectral measurements captured with a fiber optic probe to check the validity of the model and to provide insight on the ability of the chemiluminescent light emission to indicate heat release in a high pressure unstable flame. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据