4.6 Article

Influence of metallic nanoparticles in water driven along a wavy circular cylinder

期刊

CHINESE JOURNAL OF PHYSICS
卷 63, 期 -, 页码 168-185

出版社

ELSEVIER
DOI: 10.1016/j.cjph.2019.11.012

关键词

Metallic nanoparticles; Magnetic field; Slip conditions; Nanofluids

向作者/读者索取更多资源

In the present study, simultaneous effects of metallic nanoparticles and magnetohydrodynamic due to stagnation point flow of nanofluid along a wave circular cylinder is presented. The effect of induced magnetic field is incorporated to deal the boundary and thermal boundary layer domain. Mathematical modelling for momentum and energy equation is constructed that is based upon three different kinds of nanoparticles namely: copper (Cu), Titanium di oxide (TiO2), and alumina (Al2O3) within the working fluid water. Each mixture is analysed at the individual level and made comparison amongst all the mixture to examine the resistance and thermal conductivity of nanofluid within the boundary layer region. The solutions are exposed via boundary value problem using shooting method along with the Runge-Kutta-Fehlberg method. The characteristics of emerging parameters for the fluid flow and heat transfer are discussed through graphs and tables. The effects of phi (nanoparticle volume fraction) on heat transfer and shear stress at the wall are analysed in detail. It is finally concluded that by increasing the ratio of nanoparticles there is a significant increase in the temperature but slight decrease in the velocity profile.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据