4.7 Article

Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode

期刊

CHINESE CHEMICAL LETTERS
卷 31, 期 7, 页码 1961-1965

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.01.017

关键词

Advanced oxidation processes; CO2 reduction; Degradation; Electrocatalytic oxidation; Sulfate radical

资金

  1. National Natural Science Foundation of China [51878325, 51868050, 51622806, 51378246, 51720105001]
  2. Natural Science Foundation of Jiangxi Province [20162BCB22017, 20165BCB18008, 20171ACB20017, 20133ACB21001, 20171BAB206049]
  3. Graduate Innovation Fund of Jiangxi Province [YC2018-S360]

向作者/读者索取更多资源

Herein, we prepared novel three-dimensional (3D) gear-shaped Co3O4@C (Co3O4 modified by amorphous carbon) and sheet-like SnO2/CC (SnO2 grow on the carbon cloth) as anode and cathode to achieve efficient removal of 4-nitrophenol (4-NP) in the presence of peroxymonosulfate (PMS) and simultaneous electrocatalytic reduction of CO2, respectively. In this process, 4-NP was mineralized into CO2 by the Co3O4@C, and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode. Compared with the pure Co0.5 (Co3O4 was prepared using 0.5 g urea) with PMS (30 mg, 0.5 g/L), the degradation efficiency of 4-NP (60 mL, 10 mg/L) increased from 74.5%-85.1% in 60 min using the Co0.5 modified by amorphous carbon (Co0.5@C). Furthermore, when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS (30 mg, 0.5 g/L), the degradation efficiency of 4-NP increased from 85.1%-99.1% when Pt was used as cathode. In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction, the degradation efficiency of 4-NP was 99.0% in the anodic system of Co0.5@C with addition of PMS (30 mg, 0.5 g/L), while the Faraday efficiency (FE) of HCOOH was 24.1 % at voltage of -1.3 V using the SnO2/CC as cathode. The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP, while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode. Finally, the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes (AOPs) and simultaneous CO2 reduction. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据