4.7 Article

Blocking the defect sites on ultrathin Pt nanowires with Rh atoms to optimize the reaction path toward alcohol fuel oxidation

期刊

CHINESE CHEMICAL LETTERS
卷 31, 期 7, 页码 1782-1786

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.01.005

关键词

Nanowire catalyst; Ethanol electrooxidation; In situ FTIR; Defect regulation; Fuel cells

资金

  1. Natural Science Foundation of Tianjin Municipality [18JCYBJC21200]

向作者/读者索取更多资源

Anodic electrocatalyst plays the core role in direct alcohol fuel cells (DAFCs), while traditional Pt-catalysts suffer from limited catalytic activity, high over potential and severe CO poisoning. Herein, by selectively depositing Rh atoms on the defective-sites of Pt nanowires (NWs), we developed a new Pt@Rh NW electrocatalyst that exhibited enhanced electrocatalytic performance for both methanol oxidation (MOR) and ethanol oxidation (EOR). Both cyclic voltammetry (CV) and in-situ infrared spectroscopy revealed that the presence of Rh atoms suppressed the generation of poisonous intermediates and completely oxidized alcohols molecule into CO2. Atomic resolusion spherical aberration corrected high-angle annular dark field scanning transmission electron microscopy (CS-HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDS) mapping analysis revealed that Rh atoms were primarily deposited on the defective sites of Pt NWs. Meanwhile, the presence of Rh atoms also modified the electronic state of Pt atoms and therefore lowered the onset potential for alcohols oxidation potential. This work gives the first clear clue on the role of the defective sites of Pt nanocatalyst poisoning, and propose that selectively blocking these sites with trace amount of Rh is an effective strategy in designing advantageous electrocatalysts. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据