4.8 Article

A- and B-site Codoped SrFeO3 Oxygen Sorbents for Enhanced Chemical Looping Air Separation

期刊

CHEMSUSCHEM
卷 13, 期 2, 页码 385-393

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.201902698

关键词

air separation; chemical looping; density functional theory; sorbents; perovskites

资金

  1. U.S. Department of Energy [FE0031521]
  2. National Science Foundation [CBET-1510900]
  3. 2018-2019 Nagoya University-NC State Research Collaboration Seed Grant program
  4. North Carolina State University Kenan Institute for Engineering, Technology, and Science
  5. State of North Carolina

向作者/读者索取更多资源

Chemical-looping air separation has numerous potential benefits in terms of energy saving and emission reductions. The current study details a combination of density functional theory calculation and experimental efforts to design A- and B-site codoped SrFeO3 perovskites as low-temperature oxygen sorbents for chemical-looping air separation. Substitution of the SrFeO3 host structure with Ca and Co lowers oxygen vacancy formation energy by 0.24-0.46 eV and decreases the oxygen release temperature. As a result, Sr1-xCaxFe1-yCoyO3 (SCFC; x=0.2, 0.0<1.0) spontaneously releases oxygen at 400-500 degrees C even under a relatively high oxygen partial pressure (e.g. PO2=0.05 atm). Sr0.8Ca0.2Fe0.4Co0.6O3 exhibits a significantly higher oxygen capacity of 1.2 wt % at 400 degrees C and under a PO2 swing between 0.05 and 0.2 atm, when compared to the <0.2 wt % capacity for undoped a SrFeO3 (SF) and Ca-doped Sr0.8Ca0.2FeO3 (SCF). Electrical conductivity relaxation (ECR) study demonstrates that codoping of Ca and Co lowers the activation energy of oxygen diffusion and surface oxygen exchange by 26.6 or 137.9 kJ mol(-1), respectively, resulting in faster redox kinetics for SCFC than for SCF perovskite. The SCFC oxygen sorbent also exhibits excellent stability for 2000 redox cycles for air separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据