4.7 Article

High extent mass recovery of alginate hydrogel beads network based on immobilized bio-sourced porous carbon@Fe3O4-NPs for organic pollutants uptake

期刊

CHEMOSPHERE
卷 236, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124351

关键词

Magnetic particles; Beads; Dyes; Carbon; Fe3O4-NPs; RSM

资金

  1. MNEFPESRS
  2. CNRST
  3. SCAC
  4. IFM
  5. Institute of Materials Science Mulhouse -University of Upper Alsace
  6. Materials and Environment Laboratory (LME) University Ibn Zohr in the framework of Franco-Moroccan cooperation [08/00057]
  7. Mascir Foundation

向作者/读者索取更多资源

This work goes inside the understanding of organic pollutants adsorption mechanism over network alginate hydrogel beads based on immobilized bio-sourced PC@Fe3O4-NPs (PC@Fe3O4-NPs@Alginate) and highlights its high extent mass recovery in aqueous media. The samples were successfully synthesized, we previously developed porous carbon (PC), which, was used to elaborate PC@Fe3O4-NPs via simple in situ coprecipitation (PC@ Fe3O4-NPs), which was encapsulated by alginate-Ca2+ via the blend crosslinking method. The structural, textural, chemical and morphological proprieties of as prepared materials were studied by XRD, FTIR, Raman spectroscopy, nitrogen adsorption-desorption, XPS, SEM and TEM. The adsorption kinetic and isotherm data were well fitted to the pseudo-second-order and Langmuir models. Magnetic particles exhibited an excellent ability to adsorb methylene blue (MB) from aqueous solutions with maximum MB adsorption capacity of 180.42 mg g(-1) (PC@Fe3O4 NPs powder) and 49.66 mg g(-1) (beads based PC@Fe3O4-NPs@Alginate). Response surface methodology was used to optimize the removal efficiency of MB from aqueous solution and optimum parameters were determined. Magnetic beads based PC showed good magnetic propriety, long-term stability, regeneration capabilities and high extent mass recovery. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据