4.7 Article

Molecular insights into the impacts of iron(III) ions on membrane fouling by alginate

期刊

CHEMOSPHERE
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125232

关键词

Gel layer; Membrane fouling; Flory-Huggins theory; Density functional theory; Filtration resistance

资金

  1. National Natural Science Foundation of China [51978628, 51908509]

向作者/读者索取更多资源

Molecular mechanisms responsible for the filtration behaviors of sodium alginate (SA) in presence of different iron(III) ion concentration were explored in this study. It was found that specific filtration resistance (SFR) of alginate mixtures (1.0 gSA/L) firstly increased and then decreased to a trough with iron(III) concentration increase from 0 to 2.5 mM. Alginate mixture interacting with 0.1 mM iron(III) possessed an SFR as high as 1.65 x 10(14) m kg(-1), which could be explained by Flory-Huggins lattice theory related with gel filtration. Optical observation showed significant morphology transition (from gel to granular solids) of foulant layers with iron(III) concentration increase. A series of characterizations indicated the change of microstructure, pH and surface charge of alginate mixture with iron(III) concentration. Density functional theory (DFT) simulation suggested that iron(III) ion preferentially forms coordination bonds with three terminal carboxyl groups of alginate chains, facilitating elongation and cross-linking of alginate chains. Such a coordination mode induces formation of a slime and homogeneous gel, corresponding to high SFR. Continuous increase in iron(III) concentration leads to non-terminal coordination, which makes alginate chains more clustered and coiled. This effect, together with effects of the reduced surface charge and electric double layer compression, significantly decrease SFR of alginate mixtures. This study provided deep molecular insights into effects of iron(III) ions on alginate fouling. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据