4.7 Article

Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.)

期刊

CHEMOSPHERE
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124794

关键词

Nanomaterial; Heavy metal; Interaction; Response; Foliar exposure; Metabolism

资金

  1. National Natural Science Foundation of China [41471411, U1806216]
  2. Shandong Provincial Government [U1806216]
  3. National Key R&D Program of China [2018YFD0800303]
  4. Fundamental Research Funds for the Central Public Welfare Research Institutes [TKS 160226]

向作者/读者索取更多资源

Cadmium (Cd) pollution is considered one of the global environmental issues due to its adverse effects on plant and human health. With the rapid development of nanotechnology and the practical application of engineered nanoparticles (ENPs) in agriculture, the mechanisms underlying the interactions between NPs and heavy metal on their uptake, accumulation, and phytotoxicity in crops are still not fully understood. Therefore, the impact of TiO2 NPs (0, 100, 250 mg/L) and Cd (0, 50 mu M) co-exposure on hydroponic maize (Zea mays L) was determined under two exposure modes. Results showed that root coexposure to TiO2 NPs and 100 mg/L Cd significantly enhanced Cd uptake and produced greater phytotoxicity in maize than foliar exposure to TiO2 NPs. Meanwhile, plant dry weight and chlorophyll content showed a reduction of 45.3% and 50.5%, respectively, when compared with single Cd treatment. In addition, the accumulation of Ti in shoots and roots increased by 1.61 and 4.29 times, respectively when root exposure to 250 mg/L TiO(2 )NPs. By contrast, foliar exposure of TiO2 NPs could markedly decrease shoot Cd contents from 15.2% to 17.8% and had a stronger influence on alleviating Cd-induced toxicity via increasing superoxide dismutase (SOD) and glutathione S-transferase (GST) activities and upregulating several metabolic pathways, including galactose metabolism and citrate cycle, alanine, aspartate and glutamate metabolism, as well as glycine, serine and threonine metabolism. This study provides a new strategy for the application of TiO2 NPs in crop safety production in Cd contaminated soils. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据