4.7 Article

Effect of nitrite exposure on oxidative stress, DNA damage and apoptosis in mud crab (Scylla paramamosain)

期刊

CHEMOSPHERE
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124668

关键词

Scylla paramamosain; Nitrite exposure; Oxidative stress; Apoptosis

资金

  1. China Agriculture Research System [CARS-48]
  2. Science and Technology Program Project of Guangzhou [201904010327]
  3. Marine Fisheries Technology and Extension System of Guangdong Province [A201701B01]

向作者/读者索取更多资源

Nitrite is one of major environmental pollutants that can impact immunological parameters in aquatic organisms. In the present study, we investigated the effects of nitrite exposure on oxidative stress, DNA damage and apoptosis in mud crab (Scylla paramamosain). Mud crab were exposed to 0, 5, 10 and 15 mg L-1 nitrite for 72 h. These data showed that acid phosphatase (ACP) and alkaline phosphatase (ALP) activity significantly decreased in treatments with various concentrations of nitrite (5, 10 and 15 mg L-1) after 24 and 48 h, while the levels of nitric oxide (NO) significantly increased in these treatments. Nitrite exposure could suppress superoxide dismutase (SOD) and catalase (CAT) activity, and increase the formation of malondialdehyde (MDA) after 48 and 72 h of exposure. In addition, nitrite exposure decreased total haemocyte counts after 48 and 72 h of exposure. Cytological damage, DNA damage and apoptosis was observed obviously at 72 h after nitrite exposure. Moreover, nitrite exposure significantly induced the mRNA levels of phosphorylated Jun N-terminal kinases UNK), and eventually activated p53 signaling and caspase-3. These results indicated that nitrite exposure could induce oxidative stress, which further caused DNA damage and apoptosis in mud crab. Our results will be helpful to understand the mechanism of nitrite toxicity on crustaceans. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据