4.7 Article

Hormesis-induced gap between the guidelines and reality in ecological risk assessment

期刊

CHEMOSPHERE
卷 243, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125348

关键词

Hormesis; Ecological risk assessment; Dose-response relationship; Aliivibrio fischeri

资金

  1. Foundation of the State Key Laboratory of Pollution Control and Resource Reuse, China [PCRRK16007]
  2. National Natural Science Foundation of China [21577105, 21777123]
  3. National Water Pollution Control and Treatment Science and Technology Major Project of China [2018ZX07109-1]
  4. Science and Technology Commission of Shanghai Municipality [14DZ2261100, 17DZ1200103]
  5. 111 Project
  6. State Key Laboratory of Environmental Chemistry and Ecotoxicology [KF2016-11]

向作者/读者索取更多资源

Guidelines of ecological risk assessment (ERA) used worldwide, based on S-shaped threshold dose-response curve, fail to consider hormesis, a biphasic dose-response model represented as a J-shaped or an inverted U-shaped curve, that occurs in real-life environment. Now that humans are routinely exposed to chemicals below the threshold where hormetic stimulation prevails, it is noteworthy that over-strictness about chemical control also means a waste of limited resources. So hormesis leads to the gap between guidelines with S-shaped model and reality with hormesis model concerning ERA. In this study, hormetic effects of sulfachloropyridazine (SCP) on the bioluminescence of Aliivibrio fischeri (A. f) under 41 conditions to simulate the real environment were investigated and compared with ERA practice by some parameters, such as no observed effect concentration (NOEC), hormetic-stimulatory range (HSR) and goal concentration (GC). Not only is the reproducibility of hormesis in real-life contexts confirmed, binomial distribution (p = 0.644> 0.05) of the relative position of GC and HSR is also found, revealing a 50% probability for GC to falls in HSR, which proves the over-strictness of ERA both qualitatively and quantitatively. This study provides a novel view for ERA that hormetic principles should dominate, and conditions where S-shaped dose-response model works should be singled out on a specific basis to bridge the hormesis-induced gap. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据