4.7 Article

Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials

期刊

CHEMOSPHERE
卷 236, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124362

关键词

Anerobic co-digestion; Fat; Oil; And grease; Food waste; Granular activated carbon; Magnetite; Long-chain fatty acid

资金

  1. Faculty of Engineering Start-up Grant (University of Alberta)
  2. Natural Sciences and Engineering Research Council of Canada Engage Grant [EGP-516132-17]
  3. Future Energy Systems-Canada First Research Excellence Fund for Early Career Researcher [FES-T01-Q01]

向作者/读者索取更多资源

In this study, the effect of conductive additives on co-digestion of fat, oil, and grease (FOG) and food waste (FW) was evaluated. Initially, biochemical methane potential (BMP) test was conducted for optimization of mixing ratio of FW and FOG. The optimal methane production (800 L (kg VS)(-1)) was obtained from co-digestion of 70% FW + 30% FOG (w/w), which was 1.2 times and 12 times of that obtained from mono-digestion of FW and FOG, respectively. This optimal mixing ratio was used for subsequent fed batch studies with the addition of two conductive additives, granular activated carbon (GAC) and magnetite. The addition of GAC significantly shortened the lag phase (from 7 to 3 d), reduced accumulation of various volatile fatty acids (VFAs), and enhanced methane production rate (50-80% increase) compared to the control and magnetite-amended bioreactor. Fourier transformation infrared (MR) analysis suggested that the degradation of lipids, protein and carbohydrates was the highest in GAC amended reactor, followed by magnetite and control reactors. GAC addition also enriched more abundant and diverse bacteria and methanogens than control. Magnetite addition also showed similar trends but to a lesser degree. The substantial enrichment of syntrophic LCFA beta-oxidizing bacteria (e.g. Syntrophomonas) and methanogenic archaea in the GAC-amended bioreactor likely attributed to the superior methanogenesis kinetics in GAC amended bioreactor. Our findings suggest that the addition of GAC could provide a sustainable strategy to enrich kinetically efficient syntrophic microbiome to favor methanogenesis kinetics in co-digestion of FW and FOG. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据