4.7 Article

Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions

期刊

CHEMOSPHERE
卷 241, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125002

关键词

Fenton-like catalyst; Bimetallic MOF; Synergistic effect; Sulfamethoxazole

资金

  1. National Natural Science Foundation of China [51978368]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13026]

向作者/读者索取更多资源

Iron and copper bimetallic MOF material (FexCu1-x(BDC)) as a novel Fenton-like catalyst was prepared by a simple solvothermal method, and its performances were evaluated in the catalytic degradation of sulfamethoxazole (SMX) in the presence of hydrogen peroxide. The results indicated that the FexCu1-x(BDC)/H2O2 system was highly effective for SMX degradation over a wide pH range (4.0-8.6). At initial solution pH of 5.6, the bimetallic Fe0.75Cu0.25(BDC) catalyst exhibited a 100% SMX (20 mg L-1) removal within 120 min, which was superior to the SMX removal efficiency over monometallic Fe(BDC) and Cu(BDC) catalysts. Combined with the physical-chemical characterization, the synergistic effect between Fe and Cu species were responsible for the efficient catalytic activity. Moreover, the Fe0.75Cu0.25(BDC) catalyst showed good reusability for SMX degradation. The possible reaction mechanism in FexCu1-x(BDC)/H2O2 system was also tentatively proposed. This work has not only suggested the potential of bimetallic FexCu1-x(BDC) catalysts in Fenton-like treatment of antibiotics, but also provided useful information to develop MOF-based catalysts for efficient environmental remediation. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据