4.7 Article

Insights into the long-term pollution trends and sources contributions in Lake Taihu, China using multi-statistic analyses models

期刊

CHEMOSPHERE
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.125272

关键词

Water quality; Source apportionment; Positive matrix factorization model; Absolute principal component score-multiple linear regression model; Lake Taihu

资金

  1. Major Science and Technology Program for Water Pollution Control and Treatment in China [2017ZX07202006, 2017ZX07206004]
  2. National Natural Science Foundation of China [41771513, 41001316, 51108262]
  3. National Key Research and Development Program [2018YFC1901000]
  4. Taihu Laboratory for Lake Ecosystem Research, Chinese Academy of Science

向作者/读者索取更多资源

Eutrophication pollution seriously threatens the sustainable development of Lake Taihu, China. In order to identify the primary parameters of water quality and the potential pollution sources, the water quality dataset of Lake Taihu (2010-2014) was analyzed with the water quality index (WQI) and multivariate statistical analysis methods. Principle component analysis/factor analysis (PCA/FA) and correlation analysis screened out five significant water quality indicators, i.e. potassium permanganate index (CODMn), total nitrogen (TN), total phosphorus (TP), chloride ion (Cl-) and dissolved oxygen (DO), to represent the whole datasets and evaluate the water quality with WQI. Since northwestern of Lake Taihu was the most heavily polluted area, the parameters of the water quality were analyzed to further explore the potential sources and their contributions. Five potential pollution sources of northwestern lake were identified, and the contribution rate of each pollution source was calculated by the absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models. In brief, the PMF model was more suitable for pollution source apportionment of the northwestern lake, and the contribution rate was ranked as agricultural non-point source pollution (26.6%) > domestic sewage discharge (23.5%) > industrial wastewater discharge and atmospheric deposition (20.6%) > phytoplankton growth (16.0%) > rainfall or wind disturbance (13.4%). This study might provide useful information for the optimization of water quality management and pollution control strategies of Lake Taihu. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据