4.7 Article

Degradation mechanism study of fluoroquinolones in UV/Fe2+/peroxydisulfate by on-line mass spectrometry

期刊

CHEMOSPHERE
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124737

关键词

Fluoroquinolones; UV/Fe2+/PMS; Real-time monitoring; High-resolution mass spectrometry; Mechanism

资金

  1. Natural Science Foundation of China [21705030]
  2. National Key R&D Program of China [2017YFD0801202-03, 2016YFF0100302]
  3. Fundamental Research Funds for Central Universities
  4. NSRIF [2019071]

向作者/读者索取更多资源

Antibiotics are of concern due to their prevalent detection in aquatic environment. Sulfate radical based advanced oxidation processes show a great capacity to degrade antibiotics, but the mechanisms are still unclear. In this work, the degradation mechanism of fluoroquinolones (FQs), a major group of antibiotics, in UV/Fe2+/PMS was deeply investigated. The degradation process was in-situ and real-time monitoring by illumination-assisted droplet spray ionization mass spectrometry. A series of reactive intermediates were captured, and further characterized by high-resolution mass spectrometry (HRMS) and tandem MS. About 50 different transformation products have been identified for ciprofioxacin and norfloxacin. More than 15 products were the first time reported. Taking into consideration of the sequential formation and intensity change of intermediates, the feasible and complete transformation pathways of FQs were proposed. Compared with the photolysis process, the defluorination of FQs was not observed in this system. This work provided abundant information of FQs degradation by persulfate advanced oxidation processes (AOPs) and meanwhile demonstrated the importance of HRMS and on-line MS in mechanism research of AOPs. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据