4.7 Article

GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: Physical and microstructural properties

期刊

CHEMOSPHERE
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124738

关键词

Heavy metal; Solidification/Stabilization; Novel binder; Physical strength; Curing temperature

资金

  1. National Natural Science Foundation of China [51608113, 41330641]
  2. China Scholarship Council
  3. Killam Trusts of Canada

向作者/读者索取更多资源

Stabilization/Solidification (S/S) has been widely used in soil remediation to both improve physical properties and immobilize extensive contaminants. GGBS (granulated ground blast furnace slag)-MgO-CaO (GMCs) was used to treat Pb/Zn contaminated soil. The physical and microstructural characteristics of stabilized/solidified contaminated soil were investigated in this study. Microstructural analysis showed that the main hydration products of GMC treated contaminated soil were C-S-H and hydrotalcite like gels (Ht), which dominated the physical strength of S/S soil. The unconfined compressive strength (UCS) and the leachability of GMC treated contaminated soil were improved with the increase in GMC proportion (5%-15%), curing time (7 days and 28 days) and temperature (5 degrees C, 21 degrees C and 45 degrees C) due to the enhanced hydration. The compressive strengths of the majority mixes met the US EPA criterion (0.35 MPa). The strength of S/S soils was less affected by the increase of curing temperature after a longer curing period (28 days). According to the XRD and SEM results, both Pb and Zn in S/S contaminated soil could be immobilized by the precipitation and the adsorption on the surface of calcium silicate hydrate (C-S-H). Zn can also be incorporated into the structure of C-S-H and Ht. The addition of Pb/Zn decreased the physical strength in the order of: Pb(5000 mg/kg)>Pb(10000 mg/kg)>Zn/Pb(5000 mg/kg)>Pb(20000 mg/kg). (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据