4.7 Article

Transport of arsenic loaded by ferric humate colloid in saturated porous media

期刊

CHEMOSPHERE
卷 240, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124987

关键词

Arsenic; Colloid; Ferric humate complex; Porous media; Transport

资金

  1. National Natural Science Foundation of China [51979137, 51779079, 41931292]
  2. Natural Science of Foundation of the Jiangsu Higher Education Institutions of China [19KJB430027]

向作者/读者索取更多资源

The transport behavior of arsenic (As(V)) loaded by ferric humate (HA-Fe) colloid, denoted as HA-Fe/As(V), moving in a saturated quartz sand column, was tested in the laboratory under varying pH values, ionic strengths, and HA and Fe(III) content. The time-fractional advection-dispersion equation (fADE) model was then employed to analyze the observed migration of HA-Fe/As(V). Results showed that the stability of the HA-Fe colloid exhibited an upward trend with an increasing pH and HA content. An increasing HA content led to a decrease in the particle size of the HA-Fe colloid. However, the effect of Fe(III) concentration on colloidal particle size exhibited the opposite phenomenon. The ability of the HA-Fe colloid to load As(V) gradually increased with the increase of the Fe(III) concentration. During the cotransport of the HA-Fe/As(V) colloid, transport of As(V) was promoted with increasing pH, increasing HA and Fe(III) content, and decreasing ionic strength in the saturated porous medium. The transport behavior of As(V) can be well fitted by the fADE model. The model analysis revealed that sub-diffusion of As(V) was weakened in the HA-Fe/As(V) colloid with high HA content. Sub-diffusion of As(V) in the low pH colloid was stronger than that of the high-pH colloid, and the molecular diffusion and mechanical dispersion were more weakened in the high-pH colloid than that of the low-pH colloid. When observing varying ionic strengths, As(V) exhibited stronger sub-diffusion in the HA-Fe/As(V) colloid with a higher ionic strength. As for the Fe(III) content, transport of As(V) was mainly affected by sub-diffusion in the HA-Fe/As(V) colloid with a low Fe(III) content. These findings provided direct and necessary insights into the effects of the HA-Fe colloid on the migration of As(V) throughout saturated porous media under different hydrochemical conditions found in natural environments. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据