4.7 Article

A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II)

期刊

CHEMOSPHERE
卷 239, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124745

关键词

Modified biochar; Polyacrylamide gel; Adsorbent; Heavy metal; Easy separation

资金

  1. National Natural Science Foundation of China [51778598]
  2. China-Japanese Research Cooperative Program [2016YFE0118000]
  3. Science and Technology Program of Xiamen [3502Z20172022]

向作者/读者索取更多资源

A novel three dimensional MnO2 modified biochar-based porous hydrogel (MBCG) was fabricated to overcome the low sorption capacity and difficulty in solid-liquid separation of biochar (BC) for Cd(II) and Pb(II) removal. BC was initially modified by a rapid redox reaction between KMnO4 and Mn(II) acetate, and then incorporated into a polyacrylamide gel network via a rapid and facile free-radical polymerization. A foaming method was deliberately introduced during the fabrication to establish interpenetrated porous structure inside the network. Various characterizations were employed to examine the morphology, porous structures, chemical compositions, and mechanical properties of the samples. Adsorption performance of MBCG on Cd(II) and Pb(II) (isotherms and kinetics) as well as its desorption and reusability were also investigated. The results indicated that MnO2 modified biochars (MBC) were successfully introduced and homogeneously distributed in the porous bulk hydrogel, endowing MBCG with more uniform pore structure, excellent thermostability, remarkable mechanic strength, and superior adsorption performance. The maximum Langmuir adsorption capacity on Cd(II) and Pb(II) is 84.76 and 70.90 mg g(-1), respectively, which is comparable or even larger than that of MBC. More importantly, MBCG can be rapidly separated and easily regenerated with an excellent reusability, which could retain 92.1% and 80.5% of the initial adsorption capacities of Cd(II) and Pb(II) after five cycles. These new insights make MBCG an ideal candidate in practical applications in water treatment and soil remediation contaminated with various heavy metals. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据