4.6 Article

Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Anti-Biofouling

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 26, 期 26, 页码 5789-5793

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202000746

关键词

antimicrobial peptides; bacterial attachment; biointerfaces; click chemistry; peptoids

资金

  1. Commonwealth Scholarship Commission for a Split Site award [INCN-2017-50]
  2. EPSRC [EP/N010914/1]
  3. Stewart fund at Strathclyde PAC
  4. Tenovus Scotland [S15/29]
  5. BBSRC [BB/R00899X/1]
  6. BBSRC [BB/R00899X/1] Funding Source: UKRI
  7. EPSRC [EP/N010914/1] Funding Source: UKRI

向作者/读者索取更多资源

Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) peptoids are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne-azide click coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a volumetric spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据