4.8 Article

High Activity toward the Hydrogen Evolution Reaction on the Edges of MoS2-Supported Platinum Nanoclusters Using Cluster Expansion and Electrochemical Modeling

期刊

CHEMISTRY OF MATERIALS
卷 32, 期 3, 页码 1315-1321

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b05244

关键词

-

资金

  1. National Science Foundation [DMR-1809085]
  2. DOE Office of Science User Facility [DE-AC02-06CH11357]

向作者/读者索取更多资源

The design of efficient and cost-effective platinum-based catalysts for the hydrogen evolution reaction (HER) is critical for energy sustainability. Herein, we report high catalytic activity toward HER on the edges of platinum nanoclusters (NCs) supported on single-layer molybdenum disulfide and provide a direct link between ab initio calculations and electrochemical experiments. We determine the active catalytic sites using a cluster expansion method in conjunction with an ab initio thermodynamic approach and show that the system is thermodynamically active at HER reversible potential under electrochemical conditions. We also show that the preferred HER mechanism is the Volmer-Tafel pathway with the Volmer reaction as the rate-determining step. Using a Butler-Volmer kinetic model to simulate a linear sweep voltammogram, we obtain an exchange current density of 10(-3)-10(-2) A/cm(2), which is in the same order as those measured for Pt(111) and supported Pt NCs. Importantly, we show that, contrary to expectations, the enhanced HER mechanism is only attributable to the edges of the supported Pt NCs but not due to metal-support interactions. Our findings are general and applicable to NCs with different sizes and shapes on various supports as well as to different catalytic reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据