4.6 Article

Thermodynamic modeling of CO2 absorption in aqueous solutions of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propanediamine (MAPA) and their mixtures for carbon capture process simulation

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 158, 期 -, 页码 46-63

出版社

ELSEVIER
DOI: 10.1016/j.cherd.2020.02.029

关键词

Post-combustion CO2 capture; eNRTL thermodynamic modeling; DEEA-H2O-CO2 system; MAPA-H2O-CO2 system; DEEA-MAPA-H2O-CO2 system; Demixing solvents

资金

  1. European Cement Research Academy (ECRA) andHeidelberg Cement Company

向作者/读者索取更多资源

Carbone capture by absorption-regeneration technology is a well-known process. However, the development and utilization of new solvents remains crucial to lower its energy consumption. Therefore, an accurate thermodynamic modeling is essential for the process simulation and optimization. This work focuses on the thermodynamic modeling of CO2 absorption in aqueous solutions of N,N-diethylethanolamine (DEEA), N-methyl-1,3-propanediamine (MAPA) and their mixtures using electrolyte NRTL model. A novel thermodynamic modeling of DEEA-H2O-CO2, MAPA-H2O-CO(2 )and DEEA-MAPA-H2O-CO2 systems was developed. The modeling was carried out by considering the pure vapor pressures, excess enthalpies, dielectric constants, physical solubilities of CO2, partial and total pressures experimental data. The predicted and correlated data such as vapor-liquid equilibrium (VLE) and heat of CO2 absorption were compared favorably to experimental data from the literature. Liquid-liquid phase separation of a specific mixture of these two amines was also highlighted. Subsequently, the developed model could be used for further simulations at large scale considering that successful validation was performed at pilot scale. (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据