4.7 Article

Humic acid coated magnetic particles as highly efficient heterogeneous photo-Fenton materials for wastewater treatments

期刊

CHEMICAL ENGINEERING JOURNAL
卷 390, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124619

关键词

Magnetic materials; Heterogeneous Fenton and photo-Fenton; Humic acid coated magnetite; Contaminants of emerging concern

资金

  1. European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement [765860]

向作者/读者索取更多资源

Heterogeneous photo-Fenton reaction with iron-based magnetic materials has been proposed as an alternative to the homogeneous Fenton process to remove contaminants of emerging concern (CECs) because of the low cost, facile recovery and reuse. The iron-based material is not only a reservoir to maintain an effective concentration of iron in solution, but it also activates H2O2 at the surface. Magnetic particles (MPs) coated with different amount of humic acid (HA), prepared by co-precipitation method under anoxic and oxygenated conditions were synthesized. Their features were characterized by different techniques (XPS, XRD, TGA, SEM and FTIR). The ability of those materials to promote Fenton and photo-Fenton-like processes was investigated using 4-chlorophenol as standard substrate. The HA coating increased the catalyst efficiency, both in the dark and under irradiation, showing the best performance at pH below 4 under simulated sunlight. The iron speciation at the MPs surface had a paramount role in the H2O2 (photo)activation, although the processes promoted by the released iron in solution were not negligible on the overall degradation process. It was demonstrated a role of the surface defectivity to promote faster degradations as a consequence of not only a faster photodissolution, but also a higher heterogeneous reactivity promoted by defective sites. The best performing MPs/HA showed high efficiency for the abatement of CECs, namely Carbamazepine, Ibuprofen, Bisphenol A and 5-Tolylbenzotriazole also in real wastewater. The obtained results demonstrated the potential application of the heterogeneous (photo)-Fenton process activated by these inexpensive and environmental friendly materials in advanced wastewater treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据