4.7 Article

Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light

期刊

CHEMICAL ENGINEERING JOURNAL
卷 381, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122730

关键词

TiO2 nanopowder; Cobalt ferrite; Silver/titania/ferrite composites; Point of zero charge; Cr+6 photocatalytic reduction

资金

  1. European Commission, Environment, PureAgroH2O Programme [LIFE17 ENV/GR/000387]
  2. Prince Sultan Bin Abdulaziz International Prize for Water-Alternative Water Resources Prize 2014

向作者/读者索取更多资源

In this work, novel ternary catalysts Ag/TiO2/CoFe2O4 were synthesized with variable ferrite content for the photocatalytic reduction of Cr+6 pollutant, under UV and solar light illumination. Both TiO2 (T) and CoFe2O4 (CF) were synthesized using the sol-gel method followed by hydrothermal treatment to prepare the TiO2/CoFe2O4 (TCF) composite. Silver nanoparticles were successfully loaded on the surface of TCF to get different Ag/TCF composites. The analysis of their crystal structure indicated the presence of pure anatase phase TiO2, cubic CoFe2O4, and silver nanoparticles, in both XRD patterns and Raman spectra. It was found that the addition of silver nanoparticles to the titania/ferrite composite has a great contribution to the photocatalytic reduction of Cr+6 species. The photocatalytic reaction mechanism was studied by applying scavenging reaction process and spin trap experiments, revealing that photogenerated electrons were mainly responsible for the reduction of Cr+6 species. After the photocatalytic experiments, the composite catalyst can be easily separated from the reaction solution with a magnetic bar and be re-used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据