4.7 Article

Multiple synergistic effects of graphene-based hybrid and hexagonal born nitride in enhancing thermal conductivity and flame retardancy of epoxy

期刊

CHEMICAL ENGINEERING JOURNAL
卷 379, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122402

关键词

Synergistic effect; Hexagonal boron nitride; Graphene-based hybrid; Thermal conductivity; Flame retardancy

资金

  1. National Science Foundation of China [51273073, 51673076]
  2. China Postdoctoral Science Foundation [2018M642781]

向作者/读者索取更多资源

The heat shock, thermal aging and fire hazard of induced by delayed heat diffusion in microelectronic devices require a high-efficiency thermal management system with high-performance electronic packaging materials. In this work, the significant thermal conductivity and flame retardancy of polymer-based thermally conductive composites (PTCs) are addressed by multiple synergistic effects of hexagonal born nitride (hBN) and few flame-retardant functionalized graphene. Briefly, a multifunctional hydrophilic graphene-based hybrid containing Ni (OH)(2) nanoribbons and reduced graphene oxide (RGO) was synthesized by two-step hydrothermal process. The resulted RGO@Ni(OH)(2) hybrid and hBN sheets (lateral size of 4.37 +/- 1.68 mu m and thickness of 80 +/- 21 nm) used as synergistic and main fillers, respectively, was simultaneously added into EP matrix. As expected, the binary fillers showed multiple synergistic effects for improving the thermal conductivity and flame retardancy of composites. Typically, the good dispersion and interfacial interaction of RGO@Ni(OH)(2) hybrid in matrix can not only inhibit the stacking aggregation behavior of hBN sheets, but also bridge adjacent hBN sheets, both of which resulted in a high thermal conductivity (2.01 W/mK) of ternary composites with a synergistic increment of 39.4% comparing to EP/hBN. On the other hand, their synergistic flame retarding effect including catalytic carbonization, endothermic action and barrier effect induced by RGO@Ni(OH)(2), as well as tortuous path effect of hBN sheets, jointly led to the formation of a compact and robust char layer in condensed phase during combustion. As a result, EP/hBN/RGO@Ni(OH)(2) exhibited a desired flame ratardancy with considerable reductions being seen in peak heat release rate, total heat release and total smoke production, i.e., 33.5%, 33.8% and 43.0% comparing to neat EP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据