4.7 Article

Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar

期刊

CHEMICAL ENGINEERING JOURNAL
卷 380, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122518

关键词

Fenton-like; Magnetic biochar; Iron-based material; Steel pickling waste liquor; Antibiotics

资金

  1. National Natural Science Foundation of China [41471259]
  2. Joint Foundation of NSFC-Guangdong Province [U1401235]
  3. Guangdong Province Environment Remediation Industry Technology Innovation Alliance [2017B090907032]

向作者/读者索取更多资源

The effects of the pyrolysis temperature on the Fenton-like catalytic performance of magnetic biochar remain unclear. In this study, magnetic biochar (SMBC300, SMBC400, SMBC500) was synthesised at various temperature (300 degrees C, 400 degrees C and 500 degrees C) and used for the Fenton-like degradation of metronidazole. The characterisation results demonstrated the similarity of functional groups and the species of iron oxides in three types of magnetic biochar. Moreover, the size distribution of iron oxides in these composites were obviously affected by the pyrolysis temperature. Metronidazole was rapidly and completely degraded by SMBC400 coupled with H2O2, and its kinetic rate constant was approximately 1.86 and 3.04 times higher than those of SMBC300 and SMBC500, respectively. Electron spin resonance and free radical quenching experiments showed that obvious differences in the ability of three types of magnetic biochar can heterogeneously activate H2O2 to generate center dot OH, and that surface-bound center dot OH plays a key role in the degradation of metronidazole. The differences in Fe (II) content among the types of magnetic biochar were the main reason for the differences in catalytic performance. The degradation of metronidazole by various species of iron oxides showed that FeO was the key component in the catalytic performance of magnetic biochar. This study confirms that magnetic biochar prepared at 400 degrees C has the best performance in the Fenton-like degradation of metronidazole.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据