4.7 Article

Interaction between chlortetracycline and calcium-rich biochar: Enhanced removal by adsorption coupled with flocculation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 382, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122705

关键词

Chlortetracycline; Crab shell; Calcium-rich biochar; Adsorption; Flocculation; Integrated mechanism

资金

  1. National Natural Science Foundation of China [41573114, 21707074]
  2. National Key R&D Program of China [2017YFA0207203]

向作者/读者索取更多资源

A high residual concentration of antibiotics in the environment represents a to the animal and human health, thus, removal of these antibiotics is an urgent problem in need of a solution. In this study, calcium-rich biochar (CRB) pyrolyzed from a natural organic-inorganic-composite (i.e., crab shell) was investigated for its significant efficiency in removing efficiency of chlortetracycline (CTC) from aqueous solution. Batch experiments were conducted to explore the interaction between CRB and CTC to characterize the ability of CRB to remove CTC. Results showed that the equilibrium pH of the system decreased as the initial concentration of CTC increased, resulting in a complicated CTC removal process. Specifically, at a low initial concentration of CTC, the predominantly occurred through adsorption, which is well-described by the Freundlich isotherm model. The adsorption capacity of CRB for CTC reached 1432.3 mg g(-1) at 298 K. Adsorption rates were estimated by kinetic models, and the pseudo-second-order model displays a good fit for the kinetic data at various concentrations. Adsorption and flocculation were responsible for the removal of CTC at a high initial concentration. The maximum removal capacity was 5048 mg g(-1) at 298 K. Microcosmic characterization and macroscopic results demonstrated that cation bridging, p-p interaction, electrostatic interaction and hydrogen bonding could be involved in the removal process, which varied with the initial concentration of CTC. Therefore, based on the high-efficiency and low-cost of CRB, this material promises to be an ideal candidate to remove antibiotics (e.g., CTC) from wastewater and control their transport within the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据