4.7 Article

A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma

期刊

CHEMICAL ENGINEERING JOURNAL
卷 392, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.123699

关键词

Plasma; Hollow fiber membrane; Oxygen permeation; Perovskite; CO2 resistance

资金

  1. German Federal Ministry of Education and Research
  2. [03SFK2S3A]
  3. [03SFK2S3B]
  4. [03SFK2S3C]

向作者/读者索取更多资源

Plasma-based technologies providing extremely flexible 'turnkey' applications are increasingly attracting interest in renewable energy usage and CO2 conversion into carbon neutral fuels. Here, we report a breakthrough concept combining plasma and mixed ionic-electronic conductor hollow fiber membranes for significantly enhancing the oxygen permeability which may stimulate the CO2 conversion by product separation. Structure and composition of La0.6Ca0.4Co0.5Fe0.5O3-delta (LCCF) hollow fiber membranes were characterized before and after oxygen permeation tests in a CO2 plasma. The oxygen permeation flux can be increased by one order of magnitude via this new plasma-assisted hollow fiber membrane concept, reaching up to 4 ml min(-1) cm(-2) in a CO2 containing atmosphere. Long-term operation did not lead to an apparent decrease of the oxygen permeation flux even with fast heating and cooling cycles by switching the plasma repeatedly on and off. Thus, we consider this plasma-assisted hollow fiber membrane concept a promising process for flexible and economical CO(2 )conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据