4.7 Article

Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors

期刊

CHEMICAL ENGINEERING JOURNAL
卷 380, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122486

关键词

NiMn-LDH@CuO/CF; Core-shell hierarchical heterostructure; In situ growth; Nanowire arrays; Supercapacitor

资金

  1. Qingdao Innovation Leading Talent Program
  2. National Natural Science Foundation of China [21805124]
  3. Natural Science Foundation of Shandong Province [ZR2018BEM020]

向作者/读者索取更多资源

Supercapacitors are attracting tremendous research interest because they are expected to achieve battery-level energy density while having long calendar life and short charging time. Ultrathin layered double hydroxide nanosheets (LDHs) are promising candidates as electrode materials for energy storage. Herein, we have successfully designed and synthesized a hierarchical NiMn-LDH@CuO/CF core-shell heterostructure which comprises a vertical and intercrossing ultrathin NiMn-LDHs nanosheets shell and a slightly curly and tops tangled CuO nanowires core. The synthesized NiMn-LDH@CuO/CF electrode exhibits a high areal capacitance of 6077 mF cm(-2) (2430.8 F g(-1)) at a current density of 2 mA cm(-2) (0.8 A g(-1)), which is significant higher than those of CF, Cu(OH)(2)/CF, CuO/CF, NiMn-LDH/CF and NiMn-LDH electrodes. Moreover, a superior cycling stability of 89.22% retention after 8000 cycles at a high current density of 50 mA cm(-2) is observed and a low internal resistance R-s (0.584 Omega) can be achieved. Furthermore, an all solid-state asymmetric supercapacitor (ASC) device based on the as-synthesized hierarchical NiMn-LDH@CuO/CF core-shell heterostructure hybrid material as positive electrode and activated carbon as negative electrode is successfully fabricated and exhibits an energy density of 10.8 W h kg(-1) at a power density of 100 W kg(-1). Additionally, a LED indicator can be lit up for eight minutes when three ASCs are connected in series. The excellent electrochemical performances can be credited to the significant enhancement of the specific surface area, charge transport and mechanical stability resulted from the ultrathin LDH shell, the highly conducive CuO nanowires core-shell nanostructure. This strategy for the fabrication of hierarchical core-shell heterostructure could have enormous potential for applications in high performance energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据