4.7 Article

Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: Performance and mechanism

期刊

CHEMICAL ENGINEERING JOURNAL
卷 380, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122519

关键词

CO2-activated biochar; Persulfate; Phenol; Singlet state oxygen; Electrons transfer; Non-radical mechanism

资金

  1. National Key R&D Program of China [2018YFC1802100]
  2. China Postdoctoral Science Foundation [2018M642429]
  3. National Key Research and Development Program of China [2018YFC1901300]

向作者/读者索取更多资源

Environment-friendly and low-cost catalysts are important for persulfate based advanced oxidation processes. In this study, we reported a CO2-activated biochar (AC) as a low-cost and efficient catalyst for persulfate (PS) activation and the degradation of phenol and chlorophenols. The AC950 showed the best catalytic performance for PS with an oxidant utility of 0.5 mol/mol oxidant/h/g with an activation energy of 15.86 kJ/mol owing to its large surface area, rich surface defects, and well-modified oxygen functional groups. In contrast to a radical-based mechanism, this novel biochar/persulfate system works through a non-radical mechanism that includes singlet state oxygen generation and an electron transfer reaction pathway. The major degradation intermediate of the phenolic pollutant was identified to be benzoquinone; moreover, amongst chlorophenols, the parachlorine substituent was the first to degrade. The durability of the catalyst was low, it was deactivated primarily because of the oxidation of the carbon surface, and thermal regeneration was determined to be efficient for its recovery. Furthermore, HCO3- and HPO4(2)(-) were found to considerably inhibit the performance of the catalytic oxidation system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据