4.1 Review

Yes-Associated Protein and PDZ Binding Motif: A Critical Signaling Pathway in the Control of Human Pluripotent Stem Cells Self-Renewal and Differentiation

期刊

CELLULAR REPROGRAMMING
卷 22, 期 2, 页码 55-61

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/cell.2019.0084

关键词

human pluripotent stem cells; human embryonic stem cells; Hippo pathway; YAP; TAZ; self-renewal; differentiation

向作者/读者索取更多资源

Human pluripotent stem cells (hPSCs) can self-renew indefinitely to generate cells like themselves with a normal karyotype and differentiate into other types of cells when stimulated with a proper set of internal and external signals. hPSCs including human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) are an alternative approach toward stem cell biology, drug discovery, disease modeling, and regenerative medicine. hESCs are commonly derived from the inner cell mass of preimplantation embryos and can maintain their pluripotency in appropriate culture media. The Hippo pathway is a major integrator of cell surface-mediated signals and plays an essential role in regulating hESCs function. Yes-associated protein (YAP) and TAZ (PDZ binding motif) are critical downstream transcriptional coactivators in the Hippo pathway. The culture conditions have effects on the cytoplasmic or nuclear YAP/TAZ localization. Also, the activity of Hippo pathway is influenced by cell density, mechanical tension, and biochemical signals. In this review article, we summarize the function of YAP/TAZ and focus on the regulation of YAP/TAZ in self-renewal and differentiation of hESCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据