4.5 Article

The tetrameric pheromone module SteC-MkkB-MpkB-SteD regulates asexual sporulation, sclerotia formation and aflatoxin production in Aspergillus flavus

期刊

CELLULAR MICROBIOLOGY
卷 22, 期 6, 页码 -

出版社

WILEY-HINDAWI
DOI: 10.1111/cmi.13192

关键词

aflatoxin B1; Aspergillus flavus; pheromone module; sclerotia; secondary metabolism

资金

  1. Irish Research Council for Science, Engineering and Technology [GOIPG/2018/35]
  2. Irving S. Johnson Fund of the University of Kansas Foundation
  3. John and Pat Hume Scholarship
  4. NIH Clinical Center [R01GM112739]
  5. Science Foundation Ireland [12/RI/2346(3), 13/CDA/2142, SFI/07/RFP/GEN/F571/ECO7]
  6. Science Foundation Ireland (SFI) [13/CDA/2142] Funding Source: Science Foundation Ireland (SFI)

向作者/读者索取更多资源

For eukaryotes like fungi to regulate biological responses to environmental stimuli, various signalling cascades are utilized, like the highly conserved mitogen-activated protein kinase (MAPK) pathways. In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module regulates development and the production of secondary metabolites (SMs). This pathway consists five proteins, the three kinases SteC, MkkB and MpkB, the adaptor SteD and the scaffold HamE. In this study, homologs of these five pheromone module proteins have been identified in the plant and human pathogenic fungus Aspergillus flavus. We have shown that a tetrameric complex consisting of the three kinases and the SteD adaptor is assembled in this species. It was observed that this complex assembles in the cytoplasm and that MpkB translocates into the nucleus. Deletion of steC, mkkB, mpkB or steD results in abolishment of both asexual sporulation and sclerotia production. This complex is required for the positive regulation of aflatoxin production and negative regulation of various SMs, including leporin B and cyclopiazonic acid (CPA), likely via MpkB interactions in the nucleus. These data highlight the conservation of the pheromone module in Aspergillus species, signifying the importance of this pathway in regulating fungal development and secondary metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据