4.7 Article

The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance

期刊

CELL PROLIFERATION
卷 53, 期 3, 页码 -

出版社

WILEY
DOI: 10.1111/cpr.12779

关键词

apoptosis; intervertebral disc degeneration; mitochondrial dynamics; mitophagic flux; MitoQ; Nrf2

资金

  1. National Natural Science Foundation of China [81871124]

向作者/读者索取更多资源

Objective Mitochondrial dysfunction, oxidative stress and nucleus pulposus (NP) cell apoptosis are important contributors to the development and pathogenesis of intervertebral disc degeneration (IDD). Here, we comprehensively evaluated the effects of mitochondrial dynamics, mitophagic flux and Nrf2 signalling on the mitochondrial quality control, ROS production and NP cell survival in in vitro and ex vivo compression models of IDD and explored the effects of the mitochondria-targeted anti-oxidant MitoQ and its mechanism. Material and methods Human NP cells were exposed to mechanical compression to mimic pathological conditions. Results Compression promoted oxidative stress, mitochondrial dysfunction and NP cell apoptosis. Mechanistically, compression disrupted the mitochondrial fission/fusion balance, inducing fatal fission. Concomitantly, PINK1/Parkin-mediated mitophagy was activated, whereas mitophagic flux was blocked. Nrf2 anti-oxidant pathway was insufficiently activated. These caused the damaged mitochondria accumulation and persistent oxidative damage. Moreover, MitoQ restored the mitochondrial dynamics balance, alleviated the impairment of mitophagosome-lysosome fusion and lysosomal function and enhanced the Nrf2 activity. Consequently, damaged mitochondria were eliminated, redox balance was improved, and cell survival increased. Additionally, MitoQ alleviated IDD in an ex vivo rat compression model. Conclusions These findings suggest that comodulation of mitochondrial dynamics, mitophagic flux and Nrf2 signalling alleviates sustained mitochondrial dysfunction and oxidative stress and represents a promising therapeutic strategy for IDD; furthermore, our results provide evidence that MitoQ might serve as an effective therapeutic agent for this disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据