4.5 Article

Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner

期刊

CATALYSIS LETTERS
卷 150, 期 2, 页码 524-543

出版社

SPRINGER
DOI: 10.1007/s10562-019-03096-9

关键词

Ligninolytic enzymes; Bio-catalysis; Lignocellulosic biomass; Green solutions; Lignin removal; Redox mediator

向作者/读者索取更多资源

From the last two decades, white biotechnology, with particular reference to deploying enzyme bio-catalysis, has gained special research interest to valorize the bio-sources lignocellulosic biomass. In this context, ligninolytic enzymes from a white biotechnology background have tremendous potentialities to transform biomass following the green agenda. The enzyme-based white biotechnology is now considered a key endeavor of twenty-first century, as it offers socio-economic and environmental merits over traditional biotechnology, such as eco-friendlier processing conditions, no/limited use of harsh chemicals/reagents, high catalytic turnover, high yield, cost-effective ratio, low energy costs, green alternative of complex synthesis, renewability, reusability, and recyclability. Research efforts are underway, around the globe, to exploit naturally occurring biomass, as a green feedstock and low-cost substrates, to generate value-added bio-products, bio-fuels, and bio-energy. One core problem in developing an eco-friendlier and economical bioprocess is the pre-treatment of lignocellulosic biomass to entirely or partially remove the lignin barrier from cellulose fibers, thereby allowing the enzymes to access the cellulose fibers and generate the products of industrial interests. The entire process requires lignocelluloses deconstruction where ligninolytic enzymes in synergies with redox mediators systems have not explored much. The limited exploitation of ligninolytic enzymes with tremendous catalytic efficiencies has created a massive research gap that we have tried to cover herein. This review further insights the white biotechnology, also termed industrial biotechnology, which uses microorganisms and their unique enzyme system to facilitate the clean and sustainable deconstruction process. Graphic

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据