4.8 Article

Ultra-low friction of a-C:H films enabled by lubrication of nanodiamond and graphene in ambient air

期刊

CARBON
卷 154, 期 -, 页码 203-210

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.08.010

关键词

-

资金

  1. National Natural Science Foundation of China [51605247, 51527901]

向作者/读者索取更多资源

Hydrogenated amorphous carbon (a-C:H) is subjected to abnormal high friction in ambient air, and the possibility to retain an ultra-low friction state remains as a great challenge. Here, nanodiamond and graphene were used as solid lubricants to improve the tribological properties of two representative types of a-C:H films with 20 at.% and 40 at.% hydrogen contents, respectively. The results emphasize the exceptionally synergetic lubrication effect of nanodiamond + graphene composite with a mass ratio of 1:1 and a solution-processed concentration of 0.1 mg/mL. An ultra-low friction coefficient of similar to 0.02 was achieved for a-C:H (20 at.% H) film, and more strikingly, a dramatic reduction in COF from 0.52 to 0.07 was realized in a-C:H (40 at.% H) film. Meanwhile, the wear rates of the counterparts in both cases are significantly reduced in the presence of nano-lubricants. The lubricity mechanisms are mainly based on the in-situ growth of nanostructured tribolayers. The roles of a-C:H film bonding characteristic and the tribo-induced structural evolution of nano-lubricants in the build-up of anti-friction and wear-resistant tribolayers are discussed. These findings can enrich the understanding of surface modification pathways to a-C:H films via low-dimensional nano-lubricants and help to develop more adaptive and robust solid carbon films. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据