4.7 Article

Electrophoretic deposition of Bioactive glass - Chitosan nanocomposite coatings on Ti-6Al-4V for orthopedic applications

期刊

CARBOHYDRATE POLYMERS
卷 226, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2019.115299

关键词

Chitosan; Ti-6Al-4V; Electrophoretic deposition; Bioactive glass; Nanocomposite

向作者/读者索取更多资源

Chitosan-Bioactive glass (CS-BG) nanocomposite coatings were developed on the Ti-6Al-4V alloy to investigate the effect of the BG content on the adhesion strength, bioactivity, bio-corrosion, wettability and roughness. For this purpose, BG nanoparticles were synthesized using a sol-gel process. Three nanocomposite coatings with different concentrations of BG (0.5, 1 and 1.5 g/L) were fabricated through cathodic electrophoretic deposition (EPD). The surface morphology and composition of the coatings revealed the formation of compact coatings with a uniform distribution of BG nanoparticles. Increasing the BG content enhanced the deposition rate of CS-BG nanocomposite coatings and raised the coating thickness. Moreover, the CS-BG coating containing 1.5 g/L BG showed the best corrosion performance owing to the more uniform distribution of BG nanoparticles and its higher thickness. Also, increasing the BG concentration improved the adhesion strength, raised the roughness, and promoted wettability. Further, in-vitro bioactivity evaluation of the coated and uncoated specimens in SBF revealed that the formation of bone-like apatite was significantly encouraged on the surface of CS-BG coatings, as compared to the Ti-6Al-4V uncoated sample. So, the apatite-forming ability of the coatings was improved by increasing the BG content. For in vitro investigation, osteoblast-like cell line MG63 were cultured on Ti-6Al-4V substrate coated with CS-BG and cellular behavior was evaluated. Results demonstrated good cell attachment with no significant levels of cytotoxicity during 5 days of culture. Therefore, the electrophoretic deposition of the CS-1.5 g/L BG coating could successfully enhance the adhesion strength, bioactivity, corrosion and cellular performance of the substrate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据