4.6 Article

Dose-controlled tDCS reduces electric field intensity variability at a cortical target site

期刊

BRAIN STIMULATION
卷 13, 期 1, 页码 125-136

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.brs.2019.10.004

关键词

Transcranial electrical stimulation; Individualization; Current flow model; Inter-individual variability; Brain stimulation

资金

  1. Brain Research UK [201617-03]

向作者/读者索取更多资源

Background: Variable effects limit the efficacy of transcranial direct current stimulation (tDCS) as a research and therapeutic tool. Conventional application of a fixed-dose of tDCS does not account for inter-individual differences in anatomy (e.g. skull thickness), which varies the amount of current reaching the brain. Individualised dose-control may reduce the variable effects of tDCS by reducing variability in electric field (E-field) intensities at a cortical target site. Objective: To characterise the variability in E-field intensity at a cortical site (left primary motor cortex; M1) and throughout the brain for conventional fixed-dose tDCS, and individualised dose-controlled tDCS. Methods: The intensity and distribution of the E-field during tDCS was estimated using Realistic Volumetric Approach to Simulate Transcranial Electric Stimulation (ROAST) in 50 individual brain scans taken from the Human Connectome Project, for fixed-dose tDCS (1 mA & 2 mA) and individualised dose-controlled tDCS targeting left M1. Results: With a fixed-dose (1 mA & 2 mA), E-field intensity in left M1 varied by more than 100% across individuals, with substantial variation observed throughout the brain as well. Individualised dose-control ensured the same E-field intensity was delivered to left M1 in all individuals. Its variance in other regions of interest (right M1 and area underneath the electrodes) was comparable with fixed- and individualised-dose. Conclusions: Individualised dose-control can eliminate the variance in E-field intensities at a cortical target site. Assuming that the current delivered to the brain directly determines its physiological and behavioural consequences, this approach may allow for reducing the known variability of tDCS effects. (c) 2019 Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据