4.7 Article

The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana

期刊

BMC PLANT BIOLOGY
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-020-2266-0

关键词

Flowering time; FLOWERING LOCUS T; Photoperiod; Sugar transporter

资金

  1. Deutsche Forschung Gemeinschaft (DFG) through the Cluster of Excellence in Plant Science CEPLAS [EXC 1028]
  2. European Union via a Marie Curie Intra-European Fellowship for Career Development (Project Intra-European Grant) [2009-251839]
  3. Alexander von Humboldt Fellowship for Postdoctoral Researchers
  4. Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowships
  5. Max Planck Society

向作者/读者索取更多资源

Background Floral transition initiates reproductive development of plants and occurs in response to environmental and endogenous signals. In Arabidopsis thaliana, this process is accelerated by several environmental cues, including exposure to long days. The photoperiod-dependent promotion of flowering involves the transcriptional induction of FLOWERING LOCUS T (FT) in the phloem of the leaf. FT encodes a mobile protein that is transported from the leaves to the shoot apical meristem, where it forms part of a regulatory complex that induces flowering. Whether FT also has biological functions in leaves of wild-type plants remains unclear. Results In order to address this issue, we first studied the leaf transcriptomic changes associated with FT overexpression in the companion cells of the phloem. We found that FT induces the transcription of SWEET10, which encodes a bidirectional sucrose transporter, specifically in the leaf veins. Moreover, SWEET10 is transcriptionally activated by long photoperiods, and this activation depends on FT and one of its earliest target genes SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1). The ectopic expression of SWEET10 causes early flowering and leads to higher levels of transcription of flowering-time related genes in the shoot apex. Conclusions Collectively, our results suggest that the FT-signaling pathway activates the transcription of a sucrose uptake/efflux carrier during floral transition, indicating that it alters the metabolism of flowering plants as well as reprogramming the transcription of floral regulators in the shoot meristem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据