4.7 Article

NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis

期刊

BMC GENOMICS
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-019-6325-6

关键词

Salinity response; ROS scavenging; Energy supply; Osmotic homeostasis; Callus; Halophyte alkaligrass; Proteomics

资金

  1. Natural and Science Foundation of Heilongjiang Provence [ZD2019C003]
  2. Fundamental Research Funds for the Central Universities [2572017ET01, 2572017EA05]
  3. Foundation of Shanghai Science and Technology Committee, China [17391900600]
  4. Fund of Shanghai Engineering Research Center of Plant Germplasm Resources [17DZ2252700]

向作者/读者索取更多资源

Background: Salinity has obvious effects on plant growth and crop productivity. The salinity-responsive mechanisms have been well-studied in differentiated organs (e.g., leaves, roots and stems), but not in unorganized cells such as callus. High-throughput quantitative proteomics approaches have been used to investigate callus development, somatic embryogenesis, organogenesis, and stress response in numbers of plant species. However, they have not been applied to callus from monocotyledonous halophyte alkaligrass (Puccinellia tenuifora). Results: The alkaligrass callus growth, viability and membrane integrity were perturbed by 50 mM and 150 mM NaCl treatments. Callus cells accumulated the proline, soluble sugar and glycine betaine for the maintenance of osmotic homeostasis. Importantly, the activities of ROS scavenging enzymes (e.g., SOD, APX, POD, GPX, MDHAR and GR) and antioxidants (e.g., ASA, DHA and GSH) were induced by salinity. The abundance patterns of 55 saltresponsive proteins indicate that salt signal transduction, cytoskeleton, ROS scavenging, energy supply, gene expression, protein synthesis and processing, as well as other basic metabolic processes were altered in callus to cope with the stress. Conclusions: The undifferentiated callus exhibited unique salinity-responsive mechanisms for ROS scavenging and energy supply. Activation of the POD pathway and AsA-GSH cycle was universal in callus and differentiated organs, but salinity-induced SOD pathway and salinity-reduced CAT pathway in callus were different from those in leaves and roots. To cope with salinity, callus mainly relied on glycolysis, but not the TCA cycle, for energy supply.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据