4.4 Article

Low adaptive potential for tolerance to ethynylestradiol, but also low toxicity, in a grayling population (Thymallus thymallus)

期刊

BMC EVOLUTIONARY BIOLOGY
卷 19, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12862-019-1558-1

关键词

Chemical pollution; Rapid evolution; Salmonidae; Estrogen; Embryo survival; Larval growth; Additive genetic variance

资金

  1. Swiss National Science Foundation [31003A_159579, 31003A_182265]
  2. Swiss National Science Foundation (SNF) [31003A_159579, 31003A_182265] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Background: The presence of a novel pollutant can induce rapid evolution if there is additive genetic variance for the tolerance to the stressor. Continuous selection over some generations can then reduce the toxicity of the pollutant but also deplete the additive genetic variance for the tolerance and thereby slow down adaptation. One common pollutant that has been ecologically relevant for some time is 17alpha-ethynylestradiol (EE2), a synthetic compound of oral contraceptives since their market launch in the 1960s. EE2 is typically found in higher concentrations in rivers than in lakes. Recent experimental work revealed significant genetic variance for the tolerance to EE2 in two lake-spawning salmonid species but no such variance in river-spawning brown trout. We used another river-spawning salmonid, the European grayling Thymallus thymallus, to study the toxicity of an ecologically relevant concentration of EE2. We also used a full-factorial in vitro breeding design and singly rearing of 1555 embryos and larvae of 40 sib groups to test whether there is additive genetic variance for the tolerance to this pollutant. Results: We found that exposure to EE2 reduced larval growth after hatching, but contrary to what has been found in the other salmonids, there were no significant effects of EE2 on embryo growth and survival. We found additive genetic variance for embryo viability, i.e. heritability for fitness. However, there was no significant additive variance for the tolerance to EE2. Conclusions: Our findings support the hypothesis that continuous selection has reduced the toxicity of EE2 and depleted genetic variance for tolerance to this synthetic stressor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据