4.7 Article

Simultaneous lipid production for biodiesel feedstock and decontamination of sago processing wastewater using Candida tropicalis ASY2

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 13, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13068-020-01676-1

关键词

Sago wastewater; Starch; Oleaginous yeast; Lipid production; Biodiesel

资金

  1. [No.BT/PR8280/PBD/26/382/2013]

向作者/读者索取更多资源

Background Without sufficient alternatives to crude oil, as demand continues to rise, the global economy will undergo a drastic decline as oil prices explode. Dependence on crude oil and growing environmental impairment must eventually be overcome by creating a sustainable and profitable alternative based on renewable and accessible feedstock. One of the promising solutions for the current and near-future is the substitution of fossil fuels with sustainable liquid feedstock for biofuel production. Among the different renewable liquid feedstock's studied, wastewater is the least explored one for biodiesel production. Sago wastewater is the byproduct of the cassava processing industry and has starch content ranging from 4 to 7%. The present investigation was aimed to produce microbial lipids from oleaginous yeast, Candida tropicalis ASY2 for use as biodiesel feedstock and simultaneously decontaminate the sago processing wastewater for reuse. Initial screening of oleaginous yeast to find an efficient amylolytic with maximum lipid productivity resulted in a potent oleaginous yeast strain, C. tropicalis ASY2, that utilizes SWW as a substrate. Shake flask experiments are conducted over a fermentation time of 240 h to determine a suitable fatty acid composition using GC-FID for biodiesel production with simultaneous removal of SWW pollutants using ASY2. Results The maximum biomass of 0.021 g L-1 h(-1) and lipid productivity of 0.010 g L-1 h(-1) was recorded in SWW with lipid content of 49%. The yeast strain degraded cyanide in SWW (79%) and also removed chemical oxygen demand (COD), biological oxygen demand (BOD), nitrate (NO3), ammoniacal (NH4), and phosphate (PO4) ions (84%, 92%, 100%, 98%, and 85%, respectively). GC-FID analysis of fatty acid methyl esters (FAME) revealed high oleic acid content (41.33%), which is one of the primary fatty acids for biodiesel production. Conclusions It is evident that the present study provides an innovative and ecologically sustainable technology that generates valuable fuel, biodiesel using SWW as a substrate and decontaminates for reuse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据