4.7 Article

Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS)

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 13, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13068-019-1642-1

关键词

Sealed-oxygen supply technology (SOS); Ultrahigh-titer bioconversion; Oxygen transfer rate (OTR); Whole-cell catalysis; Gluconobacter oxydans

资金

  1. National Natural Science Foundation of China [31370573, 31901270]

向作者/读者索取更多资源

Background The critical issue in the competitiveness between bioengineering and chemical engineering is the products titer and the volume productivity. The most direct and effective approach usually employs high-density biocatalyst, while the weakened mass transfer and evoked foam problem accompany ultrahigh-density biocatalyst loading and substrate/product titer. In high-density obligate aerobic bioconversion, oxygen as electron acceptor is a speed-limiting step in bioprocesses, but sufficient oxygen supply will lead to the foaming which results in a significant reduction in oxygen utilization and the use of additional defoamers. In this study, we designed a novel sealed-oxygen supply (SOS) biotechnology to resolve the formidable barrier of oxygen transferring rate (OTR), for bio-based fuels and chemical production process. Results Based on systemic analysis of whole-cell catalysis in Gluconobacter oxydans, a novel sealed-oxygen supply technology was smartly designed and experimentally performed for biocatalytic oxidation of alcohols, sugars and so on. By a simple operation skill of automatic online supply of oxygen in a sealed stirring tank bioreactor of SOS, OTR barrier and foaming problem was resolved with great ease. We finally obtained ultrahigh-titer products of xylonic acid (XA), 3-hydroxypropionic acid (3-HPA), and erythrulose at 588.4 g/L, 69.4 g/L, and 364.7 g/L, respectively. Moreover, the volume productivity of three chemical products was improved by 150-250% compared with normal biotechnology. This SOS technology provides a promising approach to promote bioengineering competitiveness and advantages over chemical engineering. Conclusion SOS technology was demonstrated as an economic and universally applicable approach to bio-based fuels and chemicals production by whole-cell catalysis. The novel technology greatly promotes the competitiveness of bioengineering for chemical engineering, and provides a promising platform for the green and environmental use of biofuels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据