4.7 Article

Inhibiting the expression of anti-apoptotic genes BCL2L1 and MCL1, and apoptosis induction in glioblastoma cells by microRNA-342

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 121, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2019.109641

关键词

Glioblastoma; Apoptosis; miR-342; BCL2L1 (BCL-xl); MCL1

资金

  1. National Institute for Medical Research Development (NIMAD) [942974]

向作者/读者索取更多资源

Glioma is an aggressive and lethal type of brain tumor that originates from glial cells. Glioblastoma cells confer considerable resistance to induction of apoptosis, which may be due to overexpression of anti-apoptotic proteins, or the reduction of the level of some pro-apoptotic proteins. MicroRNAs (miRNAs) can affect the cell biology pathways, including replication, autophagy, necrosis, and apoptosis by regulating gene expression. In this study, using bioinformatics methods, we selected the anti-apoptotic genes, BCL2L1 and MCL1, and microRNA that targeted them (miR-342). In the next step, the Lentiviral particles that contain miR-342 (LV-miR-342) were synthesized in HEK293T cell lines. Glioblastoma cell lines, U251 and U87, were transduced with LV-miR-342. The gene expression and apoptosis induction were then assayed by real-time PCR and flow cytometry respectively. The present study showed that increasing the expression of miR-342 reduced the expression of the antiapoptotic genes, BCL2L1 and MCL1. The results of luciferase assay reports confirmed that miR-342 targeted BCL2L1 and MCL1. In addition, flow cytometry analysis indicated that miR-342 overexpression induced apoptosis in glioblastoma cells. As well as, Western blotting results confirmed a decrease in BCL2L1 protein following overexpression of miR-342 in glioblastoma cells. These findings may provide a novel therapeutic target for the treatment of glioblastoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据