4.7 Article

Inhibition of CACNA1H attenuates doxorubicin-induced acute cardiotoxicity by affecting endoplasmic reticulum stress

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 120, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2019.109475

关键词

Apoptosis; CACNA1H; Cardiotoxicity; Doxorubicin; Endoplasmic reticulum stress

资金

  1. National Natural Science Foundation of China [81570428]
  2. Key Support Project of Health Commission of Hubei Province [WJ2019Z012]
  3. Guiding Fund of Renmin Hospital of Wuhan University [RMYD2018Z07]

向作者/读者索取更多资源

Background: Doxorubicin (DOX) is an anticancer drug that has been widely used in the clinic. However, recently its application has been limited due to the cardiotoxic effects it has caused. Severe cardiotoxicity of DOX causes cardiac hypertrophy that may lead to heart failure. It has previously been demonstrated that CACNA1H is reexpressed in hypertrophic cardiomyocytes. In this study, we aimed to investigate the role of CACNA1H in DOX-induced acute cardiotoxicity, and to investigate its possible underlying mechanisms of action involved. Methods: Firstly, DOX-induced cardiac injury and changes in the expression of CACNA1H were evaluated. We explored the role of endoplasmic reticulum (ER) stress and apoptosis in mice that underwent DOX-induced cardiac injury. Next, to explore the role of CACNA1H in this process, we evaluated the changes in DOX-induced cardiac injury and ER stress after treatment with the CACNA1H specific inhibitor ABT-639. Next, we used ER stress inhibitor UR906 to verify the role of ER stress in DOX induced cardiotoxicity in H9C2 cells. Results: DOX-treatment caused acute heart injury, leading to a decrease in cardiac function in mice, an increase in apoptosis of cardiac myocytes, and a significant increase in the expression level of CACNA1H in heart tissue. Next, mice were treated with CACNA1H inhibitor ABT-639 and we demonstrated that it partly protects myocardial function and reduces myocardial cell apoptosis. In addition, our data indicated that CACNA1H may play a role in alleviating DOX-induced cardiotoxicity by reducing the severity of ER stress because the use of ABT-639 significantly changed ER stress-related proteins, including p-PERK, PERK, CHOP, GRP78, ATF6, and ATF4. Furthermore, we found that the use of ER stress inhibitor UR906 in H9C2 cells significantly alleviated the increased expression of ER stress related proteins and apoptosis related proteins caused by DOX, and meanwhile reduced the degree of intracellular oxidative stress and intracellular calcium ion concentration. Conclusion: CACNA1H inhibitors significantly alleviated DOX-induced cardiotoxicity and apoptosis induced by ER stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据