4.8 Article

Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model

期刊

BIOMATERIALS
卷 232, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2019.119752

关键词

Alzheimer's disease; Targeting efficiency; Bifunctional nanozyme; Blood-brain barrier; Microglial polarization

资金

  1. National Natural Science Foundation of China [21677080, 21722703, 31770550, 21577070]
  2. Tianjin Natural Science Foundation [18JCYBJC23600]
  3. 111 program [T2017002]
  4. Special Funds for Basic Scientific Research Services of Central Colleges and Universities

向作者/读者索取更多资源

Alzheimer's disease (AD) is one of the most common age-associated brain diseases and is induced by the accumulation of amyloid beta (A beta) and oxidative stress. Many studies have focused on eliminating A beta by nano particle affinity; however, nanoparticles are taken up mainly by microglia rather than neurons, leading poor control of AD. Herein, mitochondria-targeted nanozymes known as (3-carboxypropyl)triphenyl-phosphonium bromide-conjugated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]-functionalized molybdenum disulfide quantum dots (TPP-MoS2 QDs) were designed. TPP-MoS2 QDs mitigate A beta aggregate-mediated neurotoxicity and eliminate A beta aggregates in AD mice by switching microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype. TPP-MoS2 QDs cross the blood-brain barrier, escape from lysosomes, target mitochondria and exhibit the comprehensive activity of a bifunctional nanozyme, thus preventing spontaneous neuroinflammation by regulating the proinflammatory substances interleuicin-1 beta, interleukin-6 and tumor necrosis factors as well as the anti-inflammatory substance transforming growth factor-beta. In contrast to the low efficacy of eliminating A beta by nanoparticle affinity, the present study provides a new pathway to mitigate AD pathology through mitochondria-targeted nanozymes and M1/M2 microglial polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据