4.7 Article

pyDockEneRes: per-residue decomposition of protein-protein docking energy

期刊

BIOINFORMATICS
卷 36, 期 7, 页码 2284-2285

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btz884

关键词

-

资金

  1. Spanish 'Programa Estatal I+D+i' [BIO2016-79930-R]
  2. EU European Regional Development Fund Program Interreg V-A Spain-France-Andorra (POCTEFA)

向作者/读者索取更多资源

Motivation: Protein-protein interactions are key to understand biological processes at the molecular level. As a complement to experimental characterization of protein interactions, computational docking methods have become useful tools for the structural and energetics modeling of protein-protein complexes. A key aspect of such algorithms is the use of scoring functions to evaluate the generated docking poses and try to identify the best models. When the scoring functions are based on energetic considerations, they can help not only to provide a reliable structural model for the complex, but also to describe energetic aspects of the interaction. This is the case of the scoring function used in pyDock, a combination of electrostatics, desolvation and van der Waals energy terms. Its correlation with experimental binding affinity values of protein-protein complexes was explored in the past, but the per-residue decomposition of the docking energy was never systematically analyzed. Results: Here, we present pyDockEneRes (pyDock Energy per-Residue), a web server that provides pyDock docking energy partitioned at the residue level, giving a much more detailed description of the docking energy landscape. Additionally, pyDockEneRes computes the contribution to the docking energy of the side-chain atoms. This fast approach can be applied to characterize a complex structure in order to identify energetically relevant residues (hot-spots) and estimate binding affinity changes upon mutation to alanine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据