4.5 Article

Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats

期刊

BIOCHIMIE
卷 167, 期 -, 页码 119-134

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2019.09.011

关键词

Protocatechuic acid; Dexamethasone; Endothelial dysfunction; Gluconeogenic enzymes; Oxidative stress; Insulin signaling

向作者/读者索取更多资源

Protocatechuic acid (PCA), the natural phenolic antioxidant, reportedly exhibited hypoglycemic and insulin-like effects. Recent studies have reported its cardioprotective effect in glucocorticoid (GC)-induced hypertensive rats. Nevertheless, its beneficial role has not been investigated in the setting of GCs excess-induced insulin resistance. This study aimed to investigate the possible protective potential and the plausible mechanisms of pretreatment with PCA against GCs-induced insulin resistance, liver steatosis and vascular dysfunction. Insulin resistance was induced in male Wistar rats by a 7-day treatment with dexamethasone (DEX) (1 mg/kg/day, i.p.). PCA (50, 100 mg/kg/day, orally) was started 7 days before DEX administration and continued during the test period. PCA significantly and dose-dependently attenuated DEX-induced a) glucose intolerance (down arrow AUC(O)(GTT)), b) hyperglycemia (down arrow fasting blood glucose), c) impaired insulin sensitivity [down arrow fasting plasma insulin and homeostasis model assessment of insulin resistance (HOMA-IR) index)] and d) dyslipidemia (down arrow total cholesterol, triglycerides, low-density lipoprotein-cholesterol and very low-density lipoprotein-cholesterol). PCA mitigated DEX-induced liver steatosis with associated reduction in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Moreover, PCA ameliorated DEX-induced vascular dysfunction and enhanced ACh-induced relaxation in aortic rings. The metabolic ameliorating effects of PCA might be attributed to the enhanced insulin signaling in soleus muscles (up arrow AKT phosphorylation) and mitigating gluconeogenesis (down arrow hepatic mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). The vasculoprotective effect of PCA might be related to its ability to restore normal mRNA expression of [endothelial nitric oxide synthase (eNOS) and NADPH Oxidase 4 (NOX4)]. PCA restored normal oxidative balance [down arrow oxidant species, malondialdehyde (MDA) and (up arrow antioxidant superoxide dismutase (SOD)]. The findings herein reveal for the first time that PCA may be taken as a supplement with GCs to limit their metabolic and vascular side effects through its hypoglycemic, insulin-sensitizing, hypolipidemic and antioxidant effects. (C) 2019 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据