4.5 Article

Protective role of adiponectin against testicular impairment in high-fat diet/streptozotocin-induced type 2 diabetic mice

期刊

BIOCHIMIE
卷 168, 期 -, 页码 41-52

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2019.10.014

关键词

Adiponectin; Type 2 diabetes; Insulin resistance; Testicular impairment; Antioxidants

资金

  1. Indian Council of Medical Research (ICMR), New Delhi, India [RBMH/FW/2018/1]

向作者/读者索取更多资源

Type 2 diabetes (T2D) is the most common endocrine and metabolic disorder, leading to reproductive impairments and infertility in male. Our recent study showed crucial role of adiponectin in the regulation of testicular functions, and the circulating level of adiponectin declines in diabetes. The current study thus aimed to examine the efficacy of adiponectin in improving testicular dysfunction in high-fat diet/streptozotocin-induced T2D mice. T2D was induced in pre-pubertal mice fed with high-fat diet for similar to 10 weeks followed by a single dose of streptozotocin. T2D mice showed presence of increased body mass, hyperglycemia, hyperinsulinemia, insulin resistance, increased oxidative stress, and declined serum testosterone compared to vehicle-treated control mice. The spermatogenic, steroidogenic, metabolic, and antioxidative parameters were evaluated in T2D mice treated with adiponectin for both two and four weeks. The exogenous administration of adiponectin to T2D mice showed enhanced serum testosterone and expression of testicular steroidogenic markers proteins, insulin receptor and GLUT8 proteins, increase in intra-testicular concentrations of glucose and lactate and activity of LDH and antioxidant enzymes compared to the levels in untreated T2D mice. This suggests that treatment of adiponectin effectively improves testicular functions by increasing expression of insulin receptor-mediated increased transport of energy substrate (glucose and lactate) and a marked reduction in oxidative stress are the possible mechanism by which adiponectin effectively improves testicular function in T2D mice. (C) 2019 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据