4.5 Article

Nanomechanical insights: Amyloid beta oligomer-induced senescent brain endothelial cells

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbamem.2019.183061

关键词

Nanoindentation; Atomic force microscopy; Senescence; Brain endothelial cells; Amyloid beta oligomer; Nanomechanical properties

资金

  1. National Institutes of Health (NIH) [CA78383, CA150190]
  2. Florida Department of Health (Cancer Research Chair Fund, Florida) [3J]
  3. Mayo Clinic Pancreatic Cancer Specialized Program of Research Excellence Career Enhancement Award

向作者/读者索取更多资源

Senescent cells accumulate in various peripheral tissues during aging and have been shown to exacerbate age-related inflammatory responses. We recently showed that exposure to neurotoxic amyloid beta (A beta 1-42) oligomers can readily induce a senescence phenotype in human brain microvascular endothelial cells (HBMECs). In the present work, we used atomic force microscopy (AFM) to further characterize the morphological properties such as cell membrane roughness and cell height and nanomechanical properties such as Young's modulus of the membrane (membrane stiffness) and adhesion resulting from the interaction between AFM tip and cell membrane in A beta 1-42 oligomer-induced senescent human brain microvascular endothelial cells. Morphological imaging studies showed a flatter and spread-out nucleus in the senescent HBMECs, both characteristic features of a senescent phenotype. Furthermore, the mean cell body roughness and mean cell height were lower in senescent HBMECs compared to untreated normal HBMECs. We also observed increased stiffness and alterations in the adhesion properties in A beta 1-42 oligomer-induced senescent endothelial cells compared to the untreated normal HBMECs suggesting dynamic reorganization of cell membrane. We then show that vascular endothelial growth factor receptor 1 (VEGFR-1) knockdown or overexpression of Rho GTPase Rac 1 in the endothelial cells inhibited senescence and reversed these nanomechanical alterations, confirming a direct role of these pathways in the senescent brain endothelial cells. These results illustrate that nanoindentation and topographic analysis of live senescent brain endothelial cells can provide insights into cerebrovascular dysfunction in neurodegenerative diseases such as Alzheimer's disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据